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Extensive characterization testing has been done on a second 40 amp-hour (Ahr),

lO-cell bipolar nickel-hydrogen (Ni-H_) battery to study the effects of such

operating parameters as charge and discharge rates, temperature, and pressure,

on capacity, Ahr and watt-hour (Whr) efficiencies, end-of-charge (EOC) and mid-

point discharge voltages. Testing to date has produced many interesting results,
with the battery performing well throughout all of the test matrix except during

the high-rate (5C & ]OC) discharges, where poorer than expected results were
observed. The exact cause of this poor performance is, as yet, unknown. Small

scale 2" x 2" battery tests are to be used in studying this problem.

Low earth orbit (LEO) cycle life testing at a 40% depth of discharge (DOD) and

10% is scheduled to follow the characterization testing.

INTRODUCTION

Space power systems of the future are projected to require power levels that
extend far beyond the current levels of demand. In order to meet these

increasing needs, improvements must be made to current energy-producing systems
or new technologies must be developed. Over the past several years, LeRC has

been actively engaged in the development of a bipolar configured Ni-H 2 battery.

This battery system has the potential to meet some of these high-power needs of

the future. In a continuing effort to develop this technology to a point where

it can be used efficiently in space flight, LeRC has begun testing a second 40

Ahr, ]O-cell bipolar Ni-H z battery.

Results from the tests on the first battery tested here at LeRC were very

encouraging. The battery operated for some 10,000 LEO cycles at 40% DOD and

produced promising results in most of a variety of characterization tests, as

well (ref. I). Following the completion of this test, work began on the design

of the second bipolar battery in hopes of developing an improved battery.
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BATTERYDESIGN

The basic design of this battery differs from that of the first battery only

through slight modifications in the cell frames. Poor high-rate discharge
performance and electrolyte leakage paths in the first battery led to these

changes. It was thought, at the time, that a possible cause of the poor high-

rate performance in the first battery was limited gas access to the reaction

sites on the negative electrode. Gas-access area was thus increased by modifying
the cell frame in an attempt to alleviate this problem. The gaskets were also

changed in the cell frame design in an effort to improve the seals and thus
better contain the electrolyte within the cells. In addition to these minor

design changes, most of the individual components of the second battery came from

different manufacturers (table I). The reasons vary as to why these component

changes were made. The frame material, for instance, was changed from

polysulfone to ABS (resins which are terpolymers of acrylonitrile, butadiene,

and styrene) because of superior machining capabilities and mechanical stability

of the material. The nickel electrode was changed simply because of
availability. The other changes were based, at least in part, on more technical

reasoning and on the desire to reduce the number of parts. Because of

inconsistencies found in the previous H_ electrode, Giner, Inc. was engaged in

a development program to manufacture a sultable large area, single unit electrode
for this application. In doing so, the previous three_plece electrode would be

eliminated. A program was also undertaken with National Standard to develop a

fibrex electrolyte reservoir plate (ERP) which would contain pores in the desired

range and could be manufactured in one piece. The previous ERP was constructed

from nickel foam from Brunswick which, due to the large area required and

manufacturing limitations, resulted in a six-piece ERP. In an attempt to

increase the effective current carrying area between the gas screen and the

bipolar plate and to improve high rate performance, the gas screen waschanged

to a heavier, woven screen, as opposed to an expanded metal (Exmet) screen in
the first battery. This change also created a large weight increase which makes

it difficult to justify its use without major performance improvements. Finally,
the electrolyte concentration was changed from 31% to 26% potassium hydroxide.

This was done because of superior life seen in IPVNi-H_ testing (ref. 2). These
multiple component changes, as well as different testlng procedures and unique
cell characteristics make it difficult to directly compare results from the two

batteries. Some comparisons, however, are valid and will be made.

One feature consistent with the first battery is that both utilized an active

cooling process. This is accomplished by pumping a coolant through alternate

bipolar plates (cooling plates) in the battery stack. This enables_p_ure

readings to be controlled very consistently and accurately throughout the entire

cell. This is one advantage over IPV technology. In an IPV cell, temperatures
in the stack can run 7°C hotter than the measured temperatures outside the cell

(ref. 3).

_L

PROCEDURES

After construction was complete, the battery was placed in a boiler plate
pressure vessel, which was designed to meet safety requirements. Each cell was
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instrumented with voltage leads to measure individual cell voltages as well as

a thermocouple attached to the bipolar plate in the hydrogen cavity to measure

internal cell temperature. Additional thermocouples were placed on the exterior

of the stack to get additional temperature measurements. The pressure vessel

was equipped with a pressure transducer for measuring the hydrogen pressure, an

oxygen sensor, and a relative humidity indicator. A Modicon programmable
controller was used to run the test. All instrumented points were scanned and

digitized every 18 seconds by a Neff multiplexer and stored bya central computer

system for subsequent processing. The data could then be processed and received

in both tabular and graphical form for each cycle.

Following the setup and checkout of the test hardware and data collection system,

initial cycles were run to determine battery capacity. An initial capacity of

40 Ahrs was assumed. The capacity determination cycles basically consisted of

a C/2 rate charge with a 5% overcharge followed by a C rate discharge to a

battery voltage of 7.0 V or a low cell voltage of 0.5 V. "C" is defined as the

rate at which the battery's capacity will be depleted in one hour. The low cell

voltage cut-off of 0.5 V was used in order to prevent any cell from going

negative and thus generating hydrogen. A C/4 drain to these same cut-off points
followed this to complete the total cycle. As the cycles continued, the "C"

value was adjusted several times until a consistent capacity was recorded, which
was 40 Ahrs. While some of the formation cycles were run at 20°C and 200 psi,

the baseline capacity determination cycles were run at ]0°C and 200 psi.

Characterization tests were then run at a variety of charge and discharge rates,

temperatures, and pressures. A full set of tests was run at ]O°C and 200 psi

at charge rates of C/4, C/2, and C, and discharge rates of C/4, C/2, C, 2C, 5C,

IOC, and 5C pulse for each charge rate. Following this set of tests, subsets
of this base characterization test were run at other temperatures and pressures.

A C/2 rate charge was chosen as the charge rate to be used in these subsets.
This selection was based not only on performance in the base characterization

test, but also on performance in prior tests (ref. 4). A C/2 rate charge also

allowed the cycles to fit better into an eight-hour day than if run at a lower
rate. A subset of tests run at 20°C and 200 psi consisted of the identical

discharge rates used in the base set paired with the C/2 charge rate. The
remaining subsets (O°C at 200 psi, 30°C at 200 psi, and 20°C at 400 psi)

consisted only of the C/4, C/2, C, and 2C rate discharges. Again, all were

paired with the C/2 charge rate. Each individual test was run until three

consistent cycles were recorded. Consistency was based on Ahr and Whr

efficiencies. Each cycle consisted of a full charge (the amount of which was

equal to the capacity out in the preceding discharge plus a set percentage of

overcharge) followed by a full discharge to a battery voltage of 7.0 V or a low

cell voltage of 0.5 V (hereafter known as the normal cut-off points). A C/4

drain followed all discharges run at a C/2 rate or higher.

A set percentage of overcharge was used in this test in order to ensure adequate

charging as well as protect from unnecessary overcharging. This is compared to
the first battery test where a set charge input was used for each cycle

regardless of the capacity delivered in the previous discharge (ref. 1). A 5%

overcharge was used initially; however, this proved to be insufficient to
adequately recharge the battery so the overcharge was increased to 10%. This

percentage maintained a stable capacity from cycle to cycle; however, to reduce
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any unnecessary overcharging, the percentage was dropped to 7% where stable
capacities were once again realized. The overcharge amount thus stayed at 7%
throughout the remainder of the characterization testing.

Due to a lack of adequate manpower, cycles were not run over the weekends or
holidays. This extended wet-stand period allowed time for a weak, high-
resistance cell to self-discharge considerably more than the other cells. This
delayed the resuming of the characterization testing until after that cell could
be brought back up to a state of charge similar to that of the other cells. It
was found through trial and error that the weak cell Couid be maintained by
trickle charging the fully charged battery at a C/]50 to C/100 rate. This method
produced much more consistent results than other methods that were tried and
allowed characterization cycles to resume much more quickly. _

RESULTS AND DISCUSSION

Due to the wide range of variables in this test, all of the relevant numerical

data will not be enumerated here, but is summarized in tables II - VIII. Figures

I - 4 contain pertinent voltage profiles from throughout the test.

Before discussion can begin on the specific results in the test, a general point

needs to be made concerning the data to be discussed hereafter. It was mentioned

earlier about the problems caused by a weak cell during extended wet-stand

periods. This same weak cell created problems during the characterization

cycles, as well. The discharges on most, if not all, of the early
characterization cycles were terminated by a battery voltage of 7.0 V. This

allowed good, accurate comparisons of data from cycle to cycle. The discharges,
however, on the vast majority of characterization cycles were terminated by a

low cell voltage of 0.5 V, while the overall battery voltage ranged from 7.1 to
10.4 V. Because most of the cycles thus had no common end-of-discharge (EOD)

point, it was difficult to compare the basic, overall data between cycles. So,

where it was helpful, capacity delivered to the i0.0 V point inthe discharges

was used to compare cycles in hopes of negating some of the distorting effects
of the weak cell on the normal cut-off point data. Just what caused this cell

to perform this way is unknown at this time; however, it is thought that shunt
currents could be present which allowed an additional discharge path through

which the cell self-discharged over night between cycles. This would explain

the erratic behavior seen throughout the characterization cycles.
.............. _Z_ _ _;_ ......... _, . _ _ _2_ _ _ _ _ . _

One additional Comment about the data -- each data point represents the average

value of the three most consistent cycles run at that particular set of test

conditions. _ _ _

Increasing the charge rate had little consistent effect on the capacity delivered

to the normal cut-off points, although at lower charge rates the battery see_ed

to perform slightly better. Even the capacity delivered to IO_O V showed no
consistent trends (table II). Increasing the charge rate also had little
consistent effect on the Ahr efficiency, but, due to the accompanying increase

in battery charge voltage from an average of 15.52 V at the C/4 rate to ]6.65

V at the C rate, caused an average decrease of 7.3% in the Whr efficiency, except

!

=
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at the 2C rate discharge where no significant changes were seen (table Ill).

Thus, because of its desirable effect on Whr efficiency and lack of effect on

other variables, a low charge rate would seem to be best; however, previous

testing has suggested that a C/2 to C charge rate range should produce the
optimum results (ref. 4). It is difficult, however, to directly compare results
from this characterization test with the referenced test due to the fact that

the nickel electrodes used in both tests came from different manufacturers.

Electrolyte concentration was also different. These differences alone could

account for the discrepancies seen between the two tests. In either case,

though, results failed to show strong proof that there is clearly an optimum

charge rate.

Increasing the discharge rate caused a consistent decrease in the capacity

delivered over all temperatures and pressures except at 20°C and 400 psi where

the capacity increased slightly from 46.03 Ahr to 47.46 Ahr at discharge rates

of C/4 and C/2, respectively (table IV). The probable cause of this apparent

increase in capacity delivered at the higher rate can be traced to the weak cell

causing an early termination of the discharges run at the lower rate. Comparing

the capacities at the 10.0 V point in the discharge supports this theory. At
10.0 V, an average capacity of 43.99 Ahr was delivered at the C/4 rate and 42.59

Ahr was delivered at the C/2 rate.

Because of the lower capacities delivered at the higher discharge rates, the

resulting Ahr efficiencies also decreased across the board (table V). Also, as

discharge rates increased, Whr efficiencies decreased over all temperatures and

pressures due to the decrease in operating voltages that always accompany

increasing discharge rates (tables VI &VII). In this report, operating voltages

are reported as mid-point discharge voltages, which were calculated by averaging

the following two data points: the voltage reading at I/2 of the total discharge

time and the voltage reading at the 20 Ahr out point. Discharge voltage profiles

vs. capacity at all discharge rates can be seen in figure I.

The discharge rate effects were all as anticipated; however, at high discharge

rates of 5C and I0C, performance was very poor. Poor performance was also seen

at these rates in the first battery (ref. I); but, despite attempts to alleviate

this problem through design and individual component changes, even poorer

performance was seen in the second battery (figure 2). In the attempts to run

a I0C discharge, the battery voltage dropped below 7.0 V within 30 seconds.

Another I0C discharge was run and was allowed to continue past the normal cut-

off points down to a lowcell voltage of 0.] V. This discharge lasted 3 minutes

but the voltage did not begin to level off until around 4.5 V (figure I). The

5C discharges lasted longer but, again, failed to level off above a battery

voltage of 7.0 V. (tables IV - VI and figure I). Only a 5C pulse (1 second on
/ 4 seconds off) discharge was able to produce meaningful results (tables IV &

V and figures I & 3).

Several ideas have been discussed as to what could be causing this high-rate

discharge problem. Limited gas access to the negative electrode was previously
mentioned as a possible cause. The design changes mentioned earlier that were

made in an attempt to alleviate this problem instead could have elevated the

problem even more. This is based on the possibility that the holes drilled in

the battery frame to allow gas access into the interior of the battery became
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filled with electrolyte and blocked free gas flow. One argument against this

scenario is that the pressure of the gas flowing to and from the electrodes would

keep the holes clear. Also, if gas access is the problem, then, based on the

amount of H_ located in the cavity adjacent to the negative electrode, initial

voltage performance might be expected to be good but would fall off as the Hz gas
located in the cavity was used up. Data from the high-rate discharges sfiowed

no signs of good initial voltage performance and even showed signs of leveling

off at a low voltage. A second possible cause is poor contact between the gas
screen and the two surrounding components -- the negative electrode and the

bipolar plate. Due to the large surface area of the bipolar stack components,

uniform stack compression and the resulting surface contact between individual

components is difficult to consistently m_ntain. A lack of adeqUate contact

area would limit the current carrying capability and produce poor results

especially at high current levels. Another possible cause is the Goretex backing
placed on the H_ electrode during the standard production process at ginerCInc.

Its presence could possibly be limiting the effective contact area between the

Hz electrode and the gas screen, thus hindering current fiow. There Was lsome
initial concern about the possibility that this backing could Cause current_iow

problems in a bipolar configuration; however, polarizations of up to 500 mA/cm 2

were operated successfully on a small scale prior to construction of the full

size electrode. Perhaps the key point, once again, is the possible lack of

uniform stack compression in a full scale battery configuration. One possible

solution that has been discussed that could, at least, partially improve the

contact between components is to weld the gas screen to the bipolar plate. This

would assure adequate contact area between these two components, but would not

improve the contact area between the H. electrode and the gas screen. The
effects on performance that the Goretex backing has in a full scale b_ttery as

well as other possible problem areas are to be addressed in further testing.
Small scale 2" x 2" battery tests will begin soon and will be used to evaluate

some of these areas. Flooded capacity tests have already been done to evaluate

the performance effects caused by varying the nickel electrode manufacturer and

the electrolyte concentration. Electrodes from both manufacturers (Eagle Picher

and Whittaker-Yardney) were tested at ]OC, 5C, 2C, C, C/2, and C/4 discharge
rates using 26, 31, and 40%KOH as electrolyte. Nickel was used as the counter
electrode and amalgamated zinc was used as the reference electrode. Results from

this test showed no signs of in_erior high-rate performance by the Whittaker-

Yardney nickel electrode used in the second battery (figure 4). On the contrary,

these electrodes produced much more stable efficiencies and capacities at all

discharge rates tested (table VIII). The Whittaker-Yardney electrodes shown in

table VIII produced 76% of their low-rate (C/4) capacity at the high (]OC) rate,

while the Eagle Picher electrodes delivered only 39% of their low-rate capacity

at the high rate. It is not possible, however, to completely rule out the nickel

electrode as being responsible for the poor high-rate discharge performance.

Because of the flooded conditions under which these capacity measurements were

made, the ability of the different electrodes to perform under actual battery

conditions was not addressed. Thus, it is entirely possible that under actual

battery conditions the Whittaker-Yardney electrodes would not perform optimally

and that the "starved" condition could lead to the type of poor performance that

was seen at the high rates. Finally, it was not intended through these tests
to directly compare the two manufacturers' electrodes. Neither manufacturer

optimized the electrodes that were used; they simply supplied standard electrodes

of the size requested.
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Temperature variations between O°C and 30°Cproduced some interesting results.

As expected, an increase in temperature produced significant drops in EOC voltage

due to the decrease in internal resistance that accompanies rising temperatures.
Readings averaged ]6.40 V at 0% and 15.12 V at 30°C. As temperatures increased,

the mid-point discharge voltages, however, showed a steady increase at all

discharge rates except at C/4 where a 50 mV drop was seen between the

temperatures of O°C and ]O°C. (table VII). The improved voltage performance seen

at higher temperatures, however, did not directly translate into an increase in

Whr efficiencies at all conditions (table VI). At the 2C rate discharge the Whr

efficiency was the lowest (41.26%) at 30°C and the highest (53.43%) at 20°C. At

the other three discharge rates, though, 30% produced the highest efficiencies.

The discrepancy at the 2C rate discharge can be, at least partially, attributed
to a high EOD voltage of 10.3 V at 30% compared to 7.2 V at 20°C. Whether or

not the large percentage difference could have been completely overcome had the

30°C discharge run down to around 7.0 V is difficult to determine; but, certainly

a large portion of it would have been. The effect that temperature had on total

capacity out was equally interesting. For instance, as temperatures increased
from O°C to 20°C, capacity delivered to the normal cut-off points increased at

the C/2 rate discharge from 41.19 Ahr to 47.68 Ahr, respectively, but fell off
drastically at 30% to 37.50 Ahr (table IV). This trend was consistent at all

discharge rates and was also seen in the capacity data to the 10.0 V point in
the discharge. Ahr efficiencies, however, seemed to be less consistently

affected by temperature variations (table V). All of this data seems to support
the use of temperatures as high as 20°C or even 30% to produce optimum results.

This agrees rather well with the data produced during the first battery test

(ref. 1).

Increasing the. H_ pressure inside the vessel also produced some interesting
results. Negllgi_le change was seen in the EOC voltage between 200 and 400 psi

as the voltage dropped from 15.62 V to 15.59 V, respectively; however, at 400

psi, an improvement was seen in the mid-point discharge voltage at all discharge

rates (table VII). This was expected behavior because the increased pressure

would increase the activity coefficient of the gas and thus improve its

efficiency and voltage performance. When looking at the data measured to the

normal cut-off points in the discharge, the capacity, and Ahr and Whr

efficiencies all were less at the higher pressure, except at the C/4 rate

discharge, where a slight increase in both Ahr and Whr efficiencies was seen

(tables IV VI). These were not expected results but, once again, the weak

cell seems to be distorting the data by prematurely terminating the discharges

during the 400 psi cycles. Although the capacity delivered to 10.0 V is still

greater at 200 psi, the differences are not as great. Also, the Ahr and Whr

efficiency differences can be reasonably eliminated by considering the high EOD

voltages on the 400 psi cycles. Actually, the Whr efficiencies would have

probably been greater at 400 psi had all discharges terminated at similar
voltages. It certainly should illustrate that increasing or decreasing the

pressure will have minimal effects on overall battery performance.

After completion of the characterization cycles, the battery was placed on LEO

cycle life testing at 40% DOD and at I0°C.
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CONCLUSIONSANDRECOMMENDATIONS

Despite the fact that a weak cell made it difficult to directly compare some of
the data from cycle to cycle, there was enough evidence to see that the battery

produced generally expected results and performed very well throughout the

majority of the characterization test matrix. It is hoped and expected that the

LEO cycle life test that has just begun will produce similarly _ncouraging

results. One area that continues to be a problem, however, is the high-rate
discharge performance of the battery. Even though improvements were not made

in this area with this battery, several encouraging ideas have been mentioned

as possible solutions to the poor high-rate performance probiem. _AS mentioned

earlier, several studies, including small scale 2" x 2" battery tests, will be

done in hopes of pinpointing the area or areas responsible for the poor high-
rate perfQr_nance.
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Table I. - COMPONENT DIFFERENCES BETWEEN BATTERY I AND BATTERY 2

Component

Frame

Battery I

Polysulfone - Old

Battery 2

ABS - New

Nickel electrode Eagle Picher Whittaker - Yardney

Hydrogen electrode LSI Giner

ERP Ni foam - Brunswick Ni felt - Nat'l Std

Gas screen Exmet Woven (Nat'l Std)

Separator Asbestos Asbestos

Electrolyte 31% KOH 26% KOH

Table II. - CHARGE RATE EFFECTS ON CAPACITIES DELIVERED TO

NORMAL CUT-OFF VOLTAGES & TO 10.0 VOLTS AT I0°C

AND 200 PSI; BATTERY EOD VOLTAGES SHOWN UNDER
NORMAL CUT-OFF CAPACITY VALUES

Discharge Capacity to Capacity to 10.0 V
Rate Normal Cut-offs

Charge rate Charge rate

C/4 C/2 C C/4

C/4

C/2

C

2C

47.45
7.0

46.80
7.0

41.73
7.1

35.92
7.1

46.90
6.9

46.12
6.8

42.38
7.3

37.93
7.1

46.87
7.0

43.72
7.1

40.84
8.0

37.17
7.4

43.15

42.60

37.75

20.88

C/2 C

42.85

42.02

39.08

21.52

43.06

40.34

38.97

24.27
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Table Ill. - CHARGE RATE EFFECTS ON AHR & WHR EFFICIENCIES AT
10°C AND 200 PSI

Discharge Ahr Efficiency, % Whr Efficiency, %
Rate

Charge rate Charge rate

c/4 c/2 c c
_r

c14

c/2

C

2C

94.16

87.76

76.99

67.09

93.60

86.30

77.04

67.72

93.77

85.95

75.76

70.39

c/4 c/2

80.]6 78.17

72.43 69.21

60.43 58.93

46.62 45.85

74.45

66.20

55.83

46.32

Table IV. CAPACITY DELIVERED TO NORMAL CUT-OFF VOLTAGES AT ALL

TESTED CONDITIONS WITH A C/2 RATE CHARGE; BATTERY EOD
VOLTAGES SHOWN UNDER CAPACITY VALUES

Discharge Capacity, Ahr
Rate

200 psi 20°C

O°C ]O°C 20°C 30°C 200 psi 400 psi

C/4

C/2

C

2C

5C

5C Pulse

42.15
9.7

41.19
10.4
38.32

9.3
33.17

7.6
###

###

46.90
6.9

46.12
6.8

42.38
7.3

37.93
7.]

15.43
7.0

30.60
7.0

50.49

7.4

47.68

44.20

7.3

39.45

7.2

22.24
6.9

33.g7
8.1

40.7]

7.9

37.50

7.3

35.48

9.2

32.60

]0.3

###

###

50.49

7.4

47.68

44.20

7.3

39.45

7.2

22.24
6.9

33.97
8.1

46.03

8.9

47.46

7.5

38.82

8.7

33.66

9.0

###

###

*** - Noreadings available due to data collection system errors

### - 5C and 5C Pulse run only at 10°C and 20°C at 200 psi
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Table V. - AHR EFFICIENCIES AT ALL TESTED CONDITIONS WITH A C/2

RATE CHARGE

Discharge Ahr Efficiency, %
Rate

20°C

O°C 30°C 200 psi 400 psi

c14

c/2

C

2C

5C

5C Pulse

90.80

85.79

82.80

72.67

###

###

200 psi

10°C 20°C

93.60 92.04

86.30 86.76

77.04 78.86

67.72 72.39

28.18 41.52

52.08 65.18

90.96

86.68

79.62

72.23

###

###

92.04

86.76

78.86

72.39

41.52

65.18

92.55

86.20

76.85

68.38

###

###

### 5C and 5C Pulse run only at 10% and 20% at 200 psi

Table VI. - WHR EFFICIENCIES AT ALL TESTED CONDITIONS WITH A C/2

RATE CHARGE

Discharge
Rate

c/4

c/2

C

2C

5C

Whr Efficiency, %

200 psi 20°C

O°C ]O°C 20°C 30°C 200 psi 400 psi

75.90

69.28

61.67

46.51

###

78.17

69.21

58.93

45.85

15.35

77.92

63.69

53.43

24.82

79.99

75.29

68.32

41.26

###

77.92

***

63.69

53.43

24.82

80.09

71.52

63.64

52.91

###

*** - No readings available due to data collection system errors

### - 5C and 5C Pulse run only at ]O°C and 20% at 200 psi
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Table VII. - MID-PT. DISCHARGE VOLTAGES AT ALL TESTED CONDITIONS

WITH A C/2 RATE CHARGE

Discharge Mid-Pt. Discharge Voltage, V
Rate

200 psi 20°C

O°C 10°C 20°C 30°C 200 psi 400 psi

c/4

c/2

C

2C

12.90

12.40

11.45

9.70

12.85

12.45

11.72

10.15

12.95

12.65

12.15

11.10

13.20

13.00

12.60

11.83

12.95

12.65

12.15

11.10

13.10

]2.80

12.45

11.55

Table VIII. - CAPACITIES

TESTS
& AHR EFFICIENCIES FOR FLOODED ELECTRODE

Discharge
Rate

c14

c/2

C

2C

5C

10C

Capacity, Ahr

EP31

0.64

0.63

WY26

0.43

0.41

Ahr Efficiency, %

EP31

71.95

71.19

WY26

73.07

70.48

0.59

0.55

0.47

0.25

0.40

0.39

0.37

0.33

66.54

61.92

52.63

28.20

68.00

67.43

62.86

56.90
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Figure 4.'- 10C & 5C discharge voltage profiles vs. capacity

during flooded electrode tests for Eagle Picher
electrode in 31% KOH and Whittaker/Yardney elec-
trode in 26% KOH
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